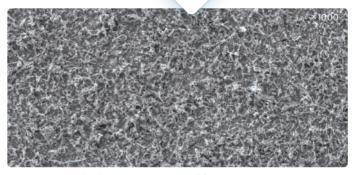


Advanced Conductive Foil


三次元集電体

次世代電池を実現する、CNT空隙

3D図

走查型電子顕微鏡(SEM)図

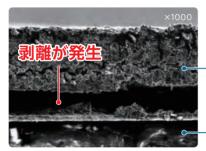
特長

- ▶ 銅箔の表面に、銅めっきでカーボンナノチューブ (CNT) を共析
- ▶ CNTによる空隙をもつ三次元構造が、活物質に対するアンカー効果を発揮
- ▶ 膨張を吸収する効果により、銅箔と活物質の密着力を改善
- ▶ バインダーなどの絶縁性物質ではなく、めっき皮膜による結合で高い導電性を確保

仕様

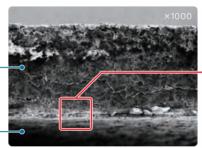
基材金属箔の種類	銅箔 (樹脂箔開発中)
基材金属箔の厚み	Min. 6μmより対応
金属メッキの種類	銅めっき(ニッケルめっき開発中)
CNT共析量・厚み	打ち合わせの上決定

Advanced Conductive Foil


三次元集電体

評価事例

三次元集電体の活用で、 Si微粒子を含む活物質の剥離抑制効果を確認


未処理銅箔

三次元集電体

活物質

銅箔

剥離なし 黒鉛

三次元

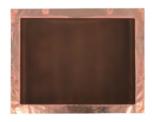
集雷体

Si

放充電100サイクル後のサンプル断面

リチウムイオン電池の容量を増加する手段として、黒鉛の10倍 以上の理論容量を持つSi系材料の利用が期待されています。し かし、Si系材料は放充電によって約4倍の体積変化が生じること から、集電体からの剥離が発生するという課題があり、活物質と しての活用が進んでいないのが実状です。

本試験では、通常の銅箔(未処理銅箔)とCNT複合めっきを施し


評価の概要

活物質	黒鉛:Si = 90:10
導電材	アセチレンブラック
バインダー	CMC•SBR
集電体	銅箔 vs. 三次元集電体

※評価協力:株式会社KRI

た三次元集電体の2種類を用いて、充放電を100サイクル行った後の断面を比較しました。結果、未処理銅箔では活物質 の剥離が発生した一方で、三次元集電体ではCNTによるアンカー効果が働き、活物質が剥離しないことを確認しました。

サンプル

▶シートタイプ

150mm × 200mm

▶ロールタイプ

280mm×50m/本

三次元集電体に関するお問い合わせ

I-PEX株式会社

新規事業開発統括部 システムイノベーション部 〒838-0106

福岡県小郡市三沢863 小郡工場

E-mail cf-sec@i-pex.com